Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.
نویسندگان
چکیده
Thermal transport in amorphous silicon dioxide (a-SiO2) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO2. With solid experimental data demonstrating ballistic phonon transport through a-SiO2, this work should provide important insight into thermal management of electronic devices.
منابع مشابه
Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide
Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself...
متن کاملCrystalline-Amorphous Interface: Molecular Dynamics Simulation of Thermal Conductivity
Effect of a crystalline-amorphous interface on heat conduction has been studied using atomistic simulations of a silicon system. System with amorphous silicon was created using the bond-switching Monte Carlo simulation method and heat conduction near room temperature was studied by molecular dynamics simulations of this system. INTRODUCTION As the sizes of electronic devices decrease an increas...
متن کاملBallistic phonon transport in holey silicon.
When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments de...
متن کاملVisible and ultraviolet Raman scattering studies of Si1ÀxGex alloys
We report Raman studies of the Si–Si phonon band in Si12xGex alloys, where the excitation is by visible and ultraviolet ~351 nm! light. At a wavelength 351 nm, the optical penetration depth is extremely shallow ~'5 nm!. By varying the excitation from 351 to 514 nm, the optical penetration depth spans from 5 to 300 nm. Two sets of samples were examined. Thin layers grown using molecular beam epi...
متن کاملPhonon-interface scattering in multilayer graphene on an amorphous support.
The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 17 12 شماره
صفحات -
تاریخ انتشار 2017